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Integrating causality into a CNN model can:

• Enhance performance (classification metrics)

• Help the model focus more accurately on the 

critical regions of the image, leading to more 

reliable and robust predictions.

Motivation

•Find a way to exploit intrinsic information: weak causal signals

•Work in low-data scenario, as in the medical domain: Few-Shot Learning

E.g. F0 F1 F2 F3

F0 0.51 0.62 0.83 0.31

F1 0.94 0.55 0.81 0.12

F2 0.46 0.61 0.6 0.11

F3 0.85 0.72 0.13 0.50

Conditional asymmetries

Max

Lehmer

1) Extract features 2) Compute causality maps

3) Determine causality factors

Methods

Results

Conclusion

mulcat mulcatbool

Setting 2-way 1-shot 4-way 1-shot 4-way 1-shot*

Main experiments

Non causality-

driven

0.539 (0.141) 0.585 (0.068) 0.586 (0.118)

Causality-driven 

mulcat

0.550 (0.144) 0.611 (0.069) 0.712 (0.118)

Causality-driven 

mulcatbool

0.556 (0.141) 0.614 (0.067) 0.713 (0.119)

Ablation study

Ablation mulcat 0.535 (0.143) 0.557 (0.063) 0.557 (0.111)

Ablation 

mulcatbool

0.540 (0.139) 0.571 (0.068) 0.612 (0.119)

*: trained to distinguish four classes (ISUP 2 − 5), but the AUROC is computed between ISUP 2 vs. rest.

Lesion mask Non causal Mulcat Mulcatbool

4) Multiply and concatenate
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